Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach.

نویسندگان

  • David N Whiteman
  • Demetrius D Venable
  • Monique Walker
  • Martin Cadirola
  • Tetsu Sakai
  • Igor Veselovskii
چکیده

Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New examination of the Raman lidar technique for water vapor and aerosols I: evaluating the temperature dependent lidar equations

The intent of this paper and its companion is to compile together the essential information required for the analysis of Raman lidar water vapor and aerosol data acquired using a single laser wavelength. In this first paper several details concerning the evaluation of the lidar equation when measuring Raman scattering are considered. These details include the influence of the temperature depend...

متن کامل

Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP) Observational Prototype Experiment

The temperature measurements of the rotational Raman lidar of the University of Hohenheim (UHOH RRL) during the High Definition of Clouds and Precipitation for advancing Climate Prediction (HD(CP)) Observation Prototype Experiment (HOPE) in April and May 2013 are discussed. The lidar consists of a frequency-tripled Nd:YAG laser at 355 nm with 10 W average power at 50 Hz, a twomirror scanner, a ...

متن کامل

Performance modeling of an airborne Raman water-vapor lidar.

We have developed a sophisticated Raman lidar numerical model to simulate the performance of two ground-based Raman water-vapor lidar systems. After verifying the model using these ground-based measurements, we then used the model to simulate the water-vapor measurement capability of an airborne Raman lidar under both daytime and nighttime conditions for a wide range of water-vapor conditions. ...

متن کامل

Lidar Measurements of Relative Humidity and Ice Supersaturation in the Upper Troposphere

We compute upper tropospheric relative humidity profiles using water vapor profiles measured by an airborne DIAL and a ground-based Raman lidar. LASE water vapor and MTP temperature profiles acquired from the NASA DC-8 aircraft during the recent Pacific Exploratory Mission Tropics B (PEM Tropics B) field mission in the tropical Pacific and the SAGE-III Ozone Loss and Validation Experiment (SOLV...

متن کامل

Lamp mapping technique for independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system.

We have investigated a technique that allows for the independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system. This technique utilizes a procedure whereby a light source of known spectral characteristics is scanned across the aperture of the lidar system's telescope and the overall optical efficiency of the system is determined. Direct analysis of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied optics

دوره 52 22  شماره 

صفحات  -

تاریخ انتشار 2013